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Biochemical reconstitution of kineto-
chore activities has shown how a
catch-bond connection is established
and maintained, how kinetochore pro-
teins assemble onto a CENP-A
nucleosome template, and how indivi-
dual subcomplexes come together to
mediate centromere–microtubule
connections.

Phosphoregulation of kinetochore
architecture has begun to explain
how microtubule attachment is regu-
lated during the cell cycle.
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During a single human lifetime, nearly one quintillion chromosomes separate
from their sisters and transit to their destinations in daughter cells. Unlike DNA
replication, chromosome segregation has no template, and, unlike transcrip-
tion, errors frequently lead to a total loss of cell viability. Rapid progress in
recent years has shown how kinetochores enable faithful execution of this
process by connecting chromosomal DNA to microtubules. These findings
have transformed our idea of kinetochores from cytological features to
immense molecular machines [254_TD$DIFF]and now allow molecular interpretation of many
long-appreciated kinetochore functions. In this review we trace kinetochore
protein connectivity from chromosomal DNA to microtubules, relating new
findings to important points of regulation and function.
Kinetochore mechanisms for estab-
lishing centromere cohesion, propa-
gating centromere identity during cell
divisions, [255_TD$DIFF]and regulating DNA replica-
tion timing [256_TD$DIFF]are now understood in
molecular detail.
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Kinetochore Organization and the Generation of Force at the Centromere
Eukaryotic chromosome segregation, or the distribution of genetic material to progeny, is
an astonishingly complex cellular task. Protein assemblies called kinetochores (see
[257_TD$DIFF]Glossary), which occupy chromosomal regions called centromeres and maintain connec-
tions between chromosomal DNA and [258_TD$DIFF]spindle microtubules, are central to the comple-
tion of this task. In doing so they serve at least five functions required for faithful
chromosome segregation: (i) they couple chromosome movement to microtubule dynam-
ics; (ii) they monitor microtubule connections and respond appropriately, allowing incorrect
attachments to reset and preventing anaphase until all connections are securely estab-
lished; (iii) in most eukaryotes, kinetochores propagate during successive cell divisions
through an epigenetic mechanism; (iv) although not the case for [259_TD$DIFF]budding yeast, which
make a single microtubule connection per chromatid, the kinetochores of most eukaryotes
involve many such connections along a single chromatid, all of which must orient towards
the same cell pole. In meiosis I, [260_TD$DIFF]co-orientation also encompasses sister chromatids; and
(v) kinetochores enhance the connection between sister chromatids, which counteracts
until anaphase the pulling force exerted by microtubules. Phosphorylation regulates these
varied functions by activating distinct kinetochore assembly states. Progress in under-
standing kinetochore architecture now allows us to consider the mechanisms that enable
fulfillment of these five functions.

The mechanistic questions discussed here carry with them major implications for human
health. Cancer cells display severe defects in chromosome segregation fidelity, and meiotic
chromosome mis-segregation causes birth defects and infertility. Roughly one third of somatic
cells display whole-chromosome imbalances in mice expressing a mutant allele of a kineto-
chore component (BUB1BH/H

[253_TD$DIFF]) [1]. This cellular defect manifests at the organismal level as an
elevated incidence of cancer, decreased fertility, and progeria [2]. Explanation of these defects
requires a detailed understanding of how the kinetochore organizes and responds to cellular
events during cell division.
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Glossary
Budding yeast/fission yeast:
budding yeast is used here to refer
to Saccharomyces cerevisiae, while
fission yeast is used to refer to
Schizosaccharomyces pombe. The
two differ in the structure of their
kinetochores: budding yeast have a
single CENP-A/Cse4 nucleosome
per chromatid, and fission yeast have
several per chromatid.
Centromere: the DNA element on
which a kinetochore assembles.
Co-/bi-orientation: when a pair of
microtubule attachment points
(typically distinct kinetochores)
connects to spindle microtubules
emanating from the same (co-
orientation) or opposite (bi-
orientation) cell pole(s).
Ctf19 complex/CCAN: group of
conserved inner kinetochore proteins
with shared and interdependent
functions.
Inner kinetochore: a subgroup of
kinetochore proteins located within
�30 nm of centromere DNA. Many
of these proteins interact with DNA.
Kinetochore: a protein assembly
that connects centromeric DNA to
spindle microtubules and enables
chromosome segregation.
Microtubule lattice: the side of a
microtubule.
Microtubule plus end: the tip of a
microtubule that faces the
kinetochore during end-on
attachment.
Outer kinetochore: a subgroup of
kinetochore proteins that interacts
with microtubules, either directly or
indirectly. This group includes Ndc80
and Ska1, for example.
Sister chromatids: the pair of
double-stranded DNA molecules
generated after a round of DNA
replication.
Spindle assembly checkpoint
(SAC): a collection of factors and
their associated activities that
prevent mitotic cells from proceeding
to anaphase until all kinetochores are
properly attached to microtubules.
Spindle microtubules: protein
filaments that grow from organizing
centers at the cell poles and
converge at the cell equator in
mitosis, a subset of which connects
to kinetochores.
Tension: a characteristic of
kinetochore-spindle microtubule
attachment when force exerted by
microtubule depolymerization is
balanced by force in the opposite
An Overview of the Chromosome–Microtubule Connection
Fascination with the interface between chromosomes and the mitotic spindle dates to the late
19th century [3]. Recent research, enabled by decades of work to identify the molecules that
make up these features, now called kinetochores, has focused on a conserved set of factors
(schematic shown in Figure 1, Key Figure). The mammalian kinetochore is made from an array
of kinetochore units, each built upon a single nucleosome-like particle. The budding yeast
kinetochore consists of a single such unit (Figure 1). The core machinery is essentially identical
in yeast and humans, and we discuss these organisms together, giving both names where
appropriate. To provide a conceptual foundation for the kinetochore functions listed above, we
trace the link between chromosomal DNA and microtubules, starting with the so-called ‘ [261_TD$DIFF]inner
kinetochore’ proteins that associate with centromeric DNA.

The anchor point of the [262_TD$DIFF]kinetochore is a nucleosome defined by a histone H3 variant,
CENP-A in humans and Cse4 in budding yeast (Figure 1, purple). In addition to deposition
and removal factors [4–7], two kinetochore proteins, CENP-N/Chl4 and CENP-C/Mif2
(Figure 1, green), interact with the CENP-A/Cse4 histone fold domain [8,9]. Correspond-
ingly, two unique features distinguish CENP-A/Cse4 from histone H3. One is a surface on
the central helix of the CENP-A/Cse4 histone fold, called the CENP-A targeting domain
(CATD), which is sufficient for interaction with its chaperone HJURP/Scm3 [5]. Formation of
a histone octamer is incompatible with HJURP/Scm3 binding [10,11], suggesting that,
although Scm3 remains associated with the kinetochore throughout the cell cycle [12], it
maintains its localization by binding [263_TD$DIFF]kinetochore proteins other than Cse4 [13]. CENP-N/
Chl4 also contacts the CATD [9], presumably after eviction of the CENP-A/Cse4 chaper-
one, but the specific features of this interaction are not yet resolved (see Outstanding
Questions). The second distinguishing feature of CENP-A/Cse4 is a cluster of hydrophobic
residues near its C-terminus that interact with CENP-C/Mif2 [14]. Finally, an interaction
between the yeast Ctf19 protein complex and the Cse4 N-terminal tail [15] suggests
additional contact between inner kinetochore proteins and the CENP-A/Cse4 nucleosome,
a possibility consistent with kinetochore assembly defects observed in [264_TD$DIFF]fission yeast and
human CENP-A/Cse4 N-terminal tail mutants [16,17].

CENP-C/Mif2 anchors the kinetochore by linking centromere-defining nucleosomes with distal
kinetochore components [18–21]. All CENP-C/Mif2 homologs contain at least one CENP-C
signature motif, and this interacts with the hydrophobic residues near the C-terminus of CENP-
A [14]. CENP-C/Mif2 dimerization through a C-terminal cupin-fold domain [22] suggests that a
single such dimer might assemble across the nucleosome dyad. While likely true at budding
yeast centromeres, which have a single Cse4 nucleosome per chromatid [23], the arrangement
could bemore complex in organismswithmultiple CENP-A nucleosomes per [265_TD$DIFF]centromere. For
example, the ratio of CENP-A to H3 in a reconstituted nucleosome array determines the
efficiency of kinetochore formation in a Xenopus laevis egg extract system [24], hinting at the
possibility that CENP-C crosslinks adjacent CENP-A particles. Regardless, targeting vertebrate
CENP-C, which has tandem nucleosome recognition motifs [14], to a defined chromosomal
locus drives kinetochore assembly in cells [25,26].

Three protein complexes assemble directly onto CENP-C/Mif2 [18,19,21,27–29]. The first of
these, the MIND complex (Figure 1, grey), contains MIS12/Mtw1, PMF1/Nnf1, Nsl1, and Dsn1.
The second, known as the COMA complex in budding yeast, contains CENP-P/Ctf19, CENP-
Q/Okp1, CENP-O/Mcm21, and CENP-U/Ame1 [27]. The third, the Ctf3 complex in budding
yeast, contains CENP-I/Ctf3, CENP-H/Mcm16, and CENP-K/Mcm22 [30]. MIND is the struc-
tural backbone of the kinetochore. The connection between CENP-C/Mif2 and MIND depends
on an N-terminal fragment of CENP-C/Mif2 [20,21] and is the target of kinase regulation
[31,32].
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direction, typically due to
biorientation of sister kinetochores on
the mitotic spindle.
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Once installed at the kinetochore, MIND establishes microtubule contact by recruiting the
conserved Ndc80 tetramer (Spc24, Spc25, Ndc80, and Nuf2; Figure 1, orange) [33]. Spc24
and Spc25 bind to a C-terminal peptide of Dsn1 and connect to the Ndc80 and Nuf2 proteins
through a four-helix bundle that joins the extended coiled-coil regions of both dimers [28,34–
37]. A calponin homology domain in Ndc80 and its flexible, N-terminal extension contact the
[266_TD$DIFF]microtubule lattice [38]. While the Ndc80 complex is sufficient to track depolymerizing
microtubule tips in vitro [39], interactions between Ndc80, microtubule-associated proteins,
and microtubules are required for the establishment and maintenance of microtubule attach-
ment in vivo (Figure 2) [40–43].

Aside from Ndc80, the kinetochore–microtubule interface is surprisingly divergent among
eukaryotes. In yeast the key feature is a [267_TD$DIFF]10-protein assembly called the DASH complex
(Figure 1, yellow) [44] which oligomerizes to form a sliding clamp around a kinetochore
microtubule [45,46]. Kinetochores initially contact the microtubule lattice (Figure 2, state 2),
and only upon conversion of this connection to a so-called ‘end-on’ attachment, a multistep
process that involves active transport along the microtubule, does the DASH complex become
essential [47,48]. Vertebrates use the Ska complex, which evolved independently of DASH [49],
to track depolymerizing microtubule ends [50,51]. Dependence on DASH in yeast may reflect
reliance on a single microtubule per chromatid [52]. Indeed, increasing the number of kineto-
chore microtubules in Candida albicans relaxes the dependence of this organism on DASH
proteins [53].

A second protein complex containing CENP-T/Cnn1 (Figure 1, tan) recruits Ndc80 to the
kinetochore [54]. CENP-T/Cnn1 depends on its binding partners CENP-W/Wip1 and the
CENP-I/Ctf3 complex for kinetochore recruitment [55,56]. An N-terminal extension of CENP-
T/Cnn1 connects directly to Spc24/25, mimicking the Dsn1–Spc24/25 connection [34,57]. This
extension, when artificially tethered to aminichromosome lacking a true centromere, enables the
minichromosome to segregate on themitotic spindle [56]. This and similar observations in human
cells [25] pose the question: to what extent doesCENP-T/Cnn1 represent a connection between
DNAandmicrotubules that isbothdistinct fromandfunctionally redundantwith theCENP-C/Mif2-
dependent connection? That cnn1D strains are viable whilemif2D strains are not suggests that
this is not, strictly speaking, thecase in yeast (TableS1 in the supplemental information online). Do
more complex centromeres fail to make sufficient microtubule connections in the absence of
CENP-T? Are the remaining connections insufficiently buttressed, or is there a so far unappreci-
ated function of CENP-T that makes it indispensable?

Regulation of Kinetochore Assembly and Function
Kinetochore structure is not monolithic but changes during the cell cycle to meet changing
demands (e.g., [58,59]). Kinases regulate kinetochore assembly in response to the cell cycle
Figure 1. (A) (From left to right) Micrograph showing a vertebrate kinetochore, micrograph showing a single purified yeast
kinetochore, and schematics showing single kinetochore units in the absence or presence of tension (labels below).
Electron micrographs have been adapted from published sources [80,131]. Kinetochore features are not drawn to scale
and are only intended to suggest overall architecture. (B) Schematic showing the connection between CENP-A and a
microtubule. The inset at upper left suggests likely flexibility in the absence of tension. Kinetochore components are
colored as in (A) with the exception that centromeric DNA is colored pink, CENP-C/Mif2 is green, and CENP-T/Cnn1 is tan.
The hydrophobic C-terminal tail of CENP-A, which contacts CENP-C [8], is in the center of the histone octamer and is also
colored pink. Only a cutout of the DASH ring is drawn (yellow). High-resolution structures were taken from published
sources [14,36,57,132]. Red circles indicate kinase-regulated interfaces (Table S2) [57,61,62,66,69,70,133]. Observed
competition between CENP-T and CENP-C for MIND interaction [68] is not shown. Abbreviations: F, force; MT,
microtubule.
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kinetochores track with depolymerizing microtubule tips (7). Abbreviation: SAC, spindle assembly checkpoint.
and microtubule attachment states (Table S2). Evidence for kinase regulation at the inner
kinetochore includes the findings that human PLK1 and CDK1 kinases restrict CENP-A
deposition to early stages of the cell cycle [60] and that, in yeast, phosphomimetic mutations
in Cse4 partially bypass an Ipl1 kinase temperature-sensitive allele [61]. Aurora B/Ipl1 kinase
also enables kinetochore assembly by phosphorylating Dsn1 [62,63]. A peptide close to the
Dsn1 N-terminus competes with CENP-C/Mif2 for MIND binding, and Aurora B/Ipl1 phos-
phorylation of Dsn1 at serine residues within this peptide stimulates [268_TD$DIFF]outer kinetochore
assembly by tilting the balance of this competition in favor of CENP-C/Mif2 [57]. Inactivation
of a key Cdk1 target site (Dsn1-S264) negates the requirement for Ipl1-mediated Dsn1
phosphorylation [62], implying that the preceding pathway does not fully describe MIND
recruitment by the inner kinetochore. A related Ipl1-dependent mechanism is active early in
meiosis when kinetochore–microtubule connections must be broken and re-established for
meiosis II [59,64].

Kinases also regulate the interface between kinetochores and microtubules. For instance,
Mps1 kinase phosphorylates Cnn1 to prevent Ndc80 binding [34,65]. Cdk1 and Ipl1 also
phosphorylate Cnn1, and total Cnn1 phosphorylation correlates with its kinetochore recruit-
ment [65–67]. In vertebrates, CDK1 phosphorylation of CENP-T promotes Ndc80 complex
recruitment [68]. A crystal structure of Dsn1 bound to Spc24/25 suggests phosphorylationmay
similarly regulate the MIND–Ndc80 interaction [57]. In an additional regulatory step, Aurora B
phosphorylates Ndc80, which allows Ndc80 to bind to Mps1 instead of to the microtubule, and
ultimately leads to KNL1/Spc105 phosphorylation and activation of the [269_TD$DIFF]spindle assembly
checkpoint (SAC) [69,70]. Finally, Mps1, CDK1, and Aurora B regulate Ska complex
26 Trends in Cell Biology, January 2018, Vol. 28, No. 1



recruitment to kinetochores [71–73]. Other kinase activities associated with the SAC are
beyond the scope of this review [74].

The regulated kinetochore assembly steps presented above cannot reconcile a set of conflicting
observations. Inyeast,deletionof theN-terminal fragmentofMif2,which isnecessaryandsufficient
for MIND binding, is not lethal in vivo [18]. Why then should the regulation of the Mif2–MIND
interaction be essential [62]? That a defined fragment of the Ame1 subunit of the COMA complex
binds to MIND, and that deletion of this fragment is in fact lethal [18], further complicates this
situation.A leadingproposal toexplain theseobservationsholds thatcooperativeassemblyof inner
kinetochore proteins is required for stable microtubule connection [18][270_TD$DIFF], but, unless there are
substantial architectural differences between yeast and vertebrate kinetochores, the absence of a
viability effect upon deletion of vertebrate CENP-U/Ame1 frustrates this interpretation (Table S1)
[54,75]. Identification of genetic suppressors of AME1 deletion and reconstitution of active
kinetochores [29,42,76] in the presence and absence of the COMA complex will therefore be
important steps towards connecting kinetochore architecture with function.
Kinetochore Assembly States
Kinetochores have a complex subunit stoichiometry that is subject to [271_TD$DIFF]the kinase regulation
discussed earlier. The number of Ndc80 molecules at each kinetochore has been used as a
measure of kinetochore assembly state; one yeast Cse4 nucleosome corresponds to a single
kinetochore microtubule and approximately eight Ndc80 complexes at metaphase
[23,52,77,78]. It is not known whether vertebrate CENP-A nucleosomes and kinetochore
microtubules are paired, but a similar Ndc80-to-microtubule ratio has been reported [79]. How
the copy-number mismatch between CENP-A/Cse4 and Ndc80 arises is not yet fully under-
stood, but a crystal structure of the yeast MIND complex shows conserved oligomerization
interfaces that, in principle, would enable about six MIND complexes to assemble into a ring
with the Spc24/25-binding peptides projecting from its periphery [57]. This geometry could
explain features seen in micrographs of purified yeast kinetochore particles (Figure 1) [80]. It
could also account for up to six Ndc80 molecules per CENP-A/Cse4 nucleosome, leaving the
remainder to be recruited by CENP-T/Cnn1 [34,56,66].

Biochemical reconstitutions have shown how a full complement of Ndc80 complexes could
associate with each kinetochore. CENP-T can recruit MIND independently of CENP-C in vivo
[25,67], and in vitro analysis of MIND–CENP-T–Ndc80 complexes has shown three Ndc80
extensions per particle, with two emanating from CENP-T and one from MIND [68]. Electron
micrographs of a yeast Ctf3–Ndc80–Cnn1 complex have provided a related view [55]. Human
CENP-C and phosphorylated CENP-T compete for MIND interaction in vitro [68], suggesting
that CENP-C/Mif2 and CENP-T each recruit MIND independently. Another possibility is that
CENP-T interacts with MIND subunits that are part of a multimeric assembly in which only two
interact with CENP-C/Mif2. Biochemical data suggest that two CENP-T/Cnn1 molecules
associate indirectly with each CENP-A/Cse4 nucleosome [29,55]. When considered along
with possible MIND oligomerization, the final number of Ndc80 complexes per centromeric
nucleosome would be 10 or 12. Without MIND oligomerization, this number is likely eight.
Protein copy-number counting at isolated kinetochore pairs in vivo [77], with attention being
paid to kinase dependencies and the cell cycle, provides one path towards evaluating these
models.

Sensing and Sustaining Microtubule Attachment
An ideal kinetochore maintains a strong attachment to the microtubule tip only when its
counterpart, located on a sister chromatid, is attached to an opposing microtubule. In the
presence of [272_TD$DIFF]tension, it must hold on for the duration of metaphase and must maintain this
Trends in Cell Biology, January 2018, Vol. 28, No. 1 27



connection during microtubule depolymerization at anaphase (Figure 2, state 7). Accordingly,
pulling a kinetochore away from the microtubule tip to which it is attached stabilizes the
kinetochore–microtubule connection, even in the absence of kinases [76]. Stu2, a spindle- and
kinetochore-associated factor that binds [273_TD$DIFF]the curved tubulin dimers at depolymerizing micro-
tubule tips, stabilizes kinetochore–microtubule connections under tension [42], thereby pro-
viding a possible explanation for this activity. The vertebrate Ska complex also associates with
curved tubulin [50], although whether Ska strengthens kinetochore–microtubule connections
specifically in the presence of tension has not been explored.

Kinetochores are not merely responsive to microtubule fluctuations, and they also destabilize
microtubules in the absence of tension and stabilize them in the presence of tension [81,82]
(Figure 2, state 4). In human cells, tension-dependent microtubule stabilization depends on
Ndc80 [81]. The overall kinetochore architecture discussed here suggests one way in which
tension across sister kinetochores might help to silence the SAC [83]. Spindle tension could
cause radially arrangedMIND complexes to flex towards the microtubule along the kinetochore
axis, drawing the proximal ends of Ndc80 complexes inward and separating checkpoint
kinases from important substrates (Figure 1; ‘Attached, Tension’). While these rearrangements
might be part of the long-sought-after tensiometer [84], the fact that the inner kinetochore
protein Sgo1 dissociates from centromeres in the presence of tension suggests that kineto-
chore stretching is at best only part of the mechanism [85].

Managing and Counteracting Spindle Forces
The ultimate function of the kinetochore is to coordinate the orderly separation of [274_TD$DIFF]sister
chromatids. Fulfilling this function depends both on a regulated pulling force and a resistance
to this pulling force that keeps sister chromatids together until anaphase. Resistance depends
on an association between sister centromeres, which in turn depends on the kinetochore
[86,87]. Cells deficient in this activity mis-segregate chromosomes at elevated rates [88], and
the defect becomes profound in meiosis [89]. Newly replicated sister chromatids are held
together by the cohesin ring complex [90,91]. Chromosomal cohesin density peaks at cen-
tromeres and dissipates until it reaches baseline (arm) levels roughly 25 kb away [92–94].
Separation of sister centromeres on the mitotic spindle depletes the centromeric cohesin pool
[88,95,96] (Figure 3A), suggesting that a subset of cohesins at centromeres connect sister
chromatids before their separation, and that cohesin complexes that are not dispersed upon
sister centromere separation do not [97]. Cohesin and related processes have been reviewed
thoroughly elsewhere [90,91,98]. We address here the role of the kinetochore in this process,
and we also consider implications for more complex centromeres and for meiosis.

The Ctf19 Complex Coordinates Sister Centromeres and Complex Kinetochores
Multiple approaches led to the identification of five kinetochore protein complexes with over-
lapping functions in mitotic fidelity, collectively referred to as the constitutive centromere-
associated network (CCAN) in vertebrates and the Ctf19 complex in yeast [27,75,99–104].
These are the CENP-N/Chl4 complex (CENP-N/Chl4 and CENP-L/Iml3), the CENP-I/Ctf3
complex, the Nkp1/2 complex (Nkp1 and Nkp2, not found in vertebrates), the CENP-T/Cnn1
complex, and the COMA complex. Association of these factors with the kinetochore is
cooperative and approximately hierarchical [55,105]. The COMA proteins lie upstream in
the assembly pathway, followed by Chl4/Iml3, the Ctf3 complex, and the Cnn1 complex
[30,55,106].

Ctf19 complex members work together to bring to the kinetochore the cohesin loading
complex, a heterodimer of the Scc2 and Scc4 proteins (Scc2/4; NIPBL and Mau2 in verte-
brates) [88,95,107] (Figure 3B). As part of this process, the Ctf19 complex recruits the Dbf4-
dependent kinase (DDK; Cdc7-Dbf4 in yeast) to the kinetochore in G1, a step required both for
28 Trends in Cell Biology, January 2018, Vol. 28, No. 1
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Figure 3. Cohesin Loading at the Centromere. (A) Schematic showing the idealized distribution of chromosomal cohesin (purple line) along the chromosome
(green lines). Each grey box depicts a different cell-cycle arrest condition (top right) in which cohesin binding to chromatin has been measured genome-wide or by
chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) in early G1 [95,134], late G1 [135], and metaphase with and without sister centromere
separation [88,95,96]. Kinetochores are drawn as blue circles, and microtubules are drawn as dark-green tubes. (B) Diagram showing factors involved in centromeric
cohesin loading [87,88,94,95,107,108,110,136–138]. The Ctf19 complex recruits DDK, and DDK activity is required both for early origin firing at the centromere and for
enhanced centromeric cohesin loading through Scc2 recruitment.
Scc2/4 recruitment and for early replication of all 16 yeast centromeres [108]. Once at
centromeres, DDK phosphorylates Ctf19, which then interacts with a conserved surface of
the Scc4 protein that is specifically required for targeting cohesin loading to centromeres in
yeast [109,110]. The kinetochore therefore ensures robust cohesin loading early in the cell
cycle. Cohesin translocation along DNA has now been observed [275_TD$DIFF]in vitro [111,112], providing a
likely explanation for the broad distribution of cohesin around centromeres. CENP-A-associ-
ated DNA also replicates early in fission yeast, flies, and mice [113–116], suggesting that
kinetochore-mediated DDK recruitment, a limiting step in DNA replication initiation, might be
common.
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Outstanding Questions
What is the structure of an intact kinet-
ochore, including the CCAN/Ctf19
complex? How is its assembly regu-
lated during the cell cycle, and how
does this regulation account for
observed stoichiometric relationships
between individual components in
vivo?

What are the essential substrates of
the mitotic kinases (Cdk1, Aurora B/
Ipl1, [277_TD$DIFF]PLK1/Cdc5), and how do they
regulate kinetochore function?

To what extent are vertebrate kineto-
chores modular, and how do CENP-A
nucleosomes cooperate along a single
chromatid?

What prevents the kinetochore from
disengaging from the microtubule dur-
ing anaphase?

Why is regulation of Dsn1–CENP-C–
Mif2 interaction essential while the
MIND-binding fragment of Mif2 is not?

What explains the different require-
ments for CCAN/Ctf19 proteins in
yeast and vertebrates, and how might
the differences relate to centromere
cohesion?
Like their homologs in budding yeast, fission yeast Ctf19 components were identified in genetic
screens for mutants with chromosome segregation defects [117,118]. Ctf19 genes are
essential for growth in fission yeast (Table S1) [117], and hypomorphic alleles of fta2 and
mis15 (CTF19 and CHL4 in budding yeast) show elevated spindle checkpoint activity and
unequal distribution of DNA to daughter cells [119,120]. The [276_TD$DIFF]CCAN/Ctf19 complex is also
essential in human cells, where knockdown or deletion of most subunits tested leads to
anaphase arrest and aberrant spindle morphology (Table S1) [102,105,121]. The pattern of
Ctf19 complex subunit essentiality across species – they are largely essential in mammals and
dispensable in yeast – suggests that they may help to orient microtubule attachments along an
individual chromatid.

Meiosis-Specific Kinetochore Functions and the Ctf19 Complex
Meiotic chromosome segregation, which entails the cosegregation of sister chromatids during
the first division and the splitting of sister chromatids during the second division, requires
adaptations of the kinetochore and its associated functions (reviewed in [90]). These adapta-
tions include the co-orientation of sister kinetochores during meiosis I, the protection of sister
centromere cohesion until its destruction at anaphase of meiosis II, and the resetting of
kinetochore–microtubule connections without an intervening round of DNA replication. In
yeast, kinetochore co-orientation depends on the Y-shaped monopolin complex [122–124]
which is thought to clamp together MIND complexes from sister kinetochores [122,125,126].
Together, Cdc5 and monopolin are sufficient to direct cosegregation of sister centromeres in
mitosis [127], but the Cdc5 substrates required for sister co-orientation in meiosis I have not
been identified.

The Ctf19 complex serves at least two functions unique to meiosis. First, retention of centro-
meric cohesin during the first meiotic division depends on Sgo1 and the Ctf19 complex proteins
Chl4 and Iml3 [89,128]. Second, Ctf19 complex proteins influence meiotic recombination by
suppressing crossovers around centromeres in two steps [129]: Ctf19 complex-dependent
cohesin recruitment biases double-strand break repair towards sister chromatids [129,130],
and Ctf19 proteins suppress double-strand breaks at centromeres independently of cohesin
recruitment [129]. Understanding these and additional meiotic functions of kinetochore pro-
teins will be an essential step towards understanding chromosome segregation during
gametogenesis.

Concluding Remarks
Centromeres, through their associated factors, organize and respond to opposing forces. The
timing of cellular events, the details of which we have not explicitly addressed here, enables the
orderly execution of these activities. We anticipate that advances in the coming years will
address the coordination of regulated kinetochore assembly by the cell cycle with particular
attention to the contributions of sequential waves of kinase activities as cells progress from G1
to metaphase. Fundamental questions remain: how are cellular decisions made, how are
checks and balances on competing inputs encoded at the molecular level, and what are the
long-term consequences of these decisions, both for individual cells and, where applicable, for
whole organisms?
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